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I.   Introduction 

Porosity distributions in nickel-sintered plaques play an important role in determining electro- 
chemical utilization and long-term performance of nickel electrodes in nickel-hydrogen   (Ni-H^) 
and nickel-cadmium (Ni-Cd) cells.  The pore size distributions of these plaques affect the loading 
level and loading uniformity of active material within the void volume. As a consequence, it is 
important to be able to measure the pore size and porosity distributions in different types of sin- 
tered plaques. Pore size variation effects on plate performance should be understood.  If large 
variations are detrimental, those plaques should be excluded from the impregnation process.  In 
this study, the characteristics of plaques from wet slurry and dry powder processes were obtained 
using an improved conductive imaging microprobe that has better resolution than that previously 
obtained (new resolution =0.1 um or less vs. old resolution of 0.2 u.m). 
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II.    Experimental 

The conductivity imaging technique is used to measure the size of a large number of pores across 
the thickness of the sintered plaque. The experimental setup consists of a piezoelectric stage 
(model P-202X STM Sample Positioner) mounted on a servo translational stage capable of mov- 
ing in two directions (X and Y, Figure 1). The STM stage allows a sample secured to the platform 
to be moved about 3 mm in any direction from its center position.  Incremental movements of 
0.1 urn or less are possible with this stage.  A one-inch-long nickel plaque, potted in epoxy and 
cross-sectioned, is mounted on the piezoelectric stage.  A platinum probe with a very fine tip (the 
probe tip radius is typically about 0.1 Jim) is attached to another translational stage capable of 
moving in the Z direction, and it is positioned perpendicular to the sample.  A digital-to-analog 
(D/A) board (model NI-DAQ AT-AO 6/10 which contains ten analog input/output channels; an 
onboard voltage of +10 V is available for analog output) is used to control the STM sample posi- 
tioner (for fine movement) and X-Y servo motor (for coarse movement).  A general-purpose 
interface board (GPIB) is used for data acquisition of conductivity measurements (Figure 2).  The 
new experimental setup offers improvements over the previously used method1'2 by having a 
piezoelectric translational stage capable of moving in smaller step sizes to obtain better resolution. 

Figure 1. Precision scanning stage. 
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Figure 2. Conductive imaging configuration. 

The dimensions, weight, and bulk porosity of dry-sintered plaques (1.2" x 0.5") were measured 
for use as calibration data for subsequent statistical analysis (Table 1). 

Table 1. The Bulk Porosity Measurements for Dry-sintered Plaques 

Sample # Thickness 
(cm) 

Width 
(cm) 

Length 
(cm) 

Weight(c 
m) 

Solid Vol 
(cm3) 

Wt. Sinter     Wt. Screen Plaque 
(9) (g) Porosity (%) 

25-249 0.0705 1.196 3.03 0.58 0255 0.450 0.132 74.4 
25-259 0.076 1.19 3.06 0.56 0277 0.430 0.132 77.2 
25-327 0.0777 1.20 3.1 0.58 0289 0.452 0.132 77.3 

437-H2-I 0.0754 151 3.06 0.62 0279 0.482 0.139 75.0 
438-H2-E 0.0732 120 3.06 0.58 0268 0.455 0.131 75.5 
439-H2-H 0.0749 1.20 3.10 0.61 0278 0.480 0.136 752 
441-H2-E 0.0762 152 3.10 0.63 0288 0.492 0.141 75.3 
440-H2- 0.0727 1.15 3.09 0.58 0258 0.452 0.131 74.7 



During the experiment, the platinum probe is lowered to touch the sample.   If the probe encoun- 
ters a sinter particle, conductivity between the sample and the Pt probe will be observed. If the 
probe scans through a void region, no conductivity is recorded. Typically, 40-50 scans, each 
consisting of 6,000 to 8,000 conductivity measurements, were obtained across the width of each 
nickel sinter sample. These data were evaluated to determine the size of individual pores. Pore 
sizes were calculated in five different regions of the sinter cross-section thickness to form a pore 
size distribution.  Statistical analysis of the data provides porosity and pore-size distributions in 
sintered plaques.  More details on the analysis method are given in Refs. 1 and 2. 



I.    Results and Discussion 

Eight dry powder plaques were obtained, and their porosity characteristics were measured.  For 
dry-powder sinter, the mean pore diameter does not vary appreciably across the thickness of the 
plaque (from 15 to 30 |am), except for samples # 439-H2H and 438-H2E, which have a more 
pronounced variation (from 15 to 45 (im; see Figures 3 and 4).  Figure 5 shows the comparison 
between the mean pore diameter distributions for dry-powder sinter and slurry-coated plaques. 

Sinters obtained from the slurry process have larger pores in the interior of the plaque (>60 um, 
Ref. 2) and smaller pores near the surface as compared with those of the dry powder process 
(Figure 5 and Ref. 2). The presence of large pores in the center of the plaques is not desirable 
because large internal voids can diminish the electrode energy density. These pores do not 
completely fill with active material, or if filled, do not give high electrochemical utilization. 
Figure 5 shows that for the slurry process, the number of pores larger than 10-20 (xm in the 
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Figure 3.    Mean pore diameter distribution (437-H2-1,438-H2-E, 439-H2-H, 
441-h2-E, 440-H2-J). 
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central regions of the plaques is very significant, and utilization has been shown3 to be optimum 
when average pore size is below approximately 20 urn, utilization decreasing sharply as the pore 
size increases.  In practice, the pore size distribution of sintered plaque is preferred to be between 
10 and 20 (im for optimum performance of the finished electrode.3  Therefore, adjustment of the 
slurry process to minimize the incidence of larger pores in the inner region may be desirable. 

Figures 6 and 7 indicate the relative porosity distributions for dry-powder plaques.  The 
relative porosity distribution was calculated by correlating the average cumulative areas of pores 
with the known bulk porosity. *>2 As shown in these figures, the relative porosity varies as much 
as 10-20% for dry-powder plaques. However, this variation is not as pronounced as that of the 
wet slurry plaque (Figure 8 and Ref. 2).  The porosity distributions of dry-powder plaques are 
skewed (Figures 6 and 7) with a higher porosity on one side of the plaque. The slurry process 
sinter tends to have a more significant variation in porosity distribution across the thickness of the 
plaque.  The very low porosity in the center of the slurry-coated plaque (Figure 8) results from 
the presence of the perforated nickel metal substrate in this region (for the dry sinter process, the 
substrate is a fine-mesh screen). 
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Figure 6.    Porosity distribution for dry-sintered plaques (437-H2-I, 438-H2-E, 
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Figures 9 and 10 show plots of the distribution of the non-uniformity parameters with cross- 
sectional thickness.  The non-uniformity is a measure of the uniformity of a certain pore size 
(mean diameter in this case) within any specific region of the sinter. If the non-uniformity 
parameter approaches a large number, it suggests that the void area is in a single pore.  If the 
parameter is unity, it is an indication that the pores are uniform within the sinter region.  As shown 
in Figures 9 and 10, the pore sizes of these dry-sinter plaques are relatively uniform across the 
thickness (non-uniformity parameter <6), except for samples # 441-H2E, 439-H2E, and 25-327. 
For the dry-sinter plaques used in this study, generally, the fraction of pores having diameters 
close to the mean diameter (15-20 urn) is significant, which is a desirable pore size distribution. 
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IV.    Summary and Recommendations 

The improved conductive imaging technique, developed within the Energy Technology 
Department, provides an effective tool for the determination of porosity and pore-size distribu- 
tions of unimpregnated plaque materials.  This technique helps characterize the porosity variation 
for different production conditions or for diverse manufacturing methods.  It is possible to char- 
acterize the differences in porosity distributions for plaques made from slurry and dry powder 
processes by using this technique.  The dry and slurry sintering processes have been used for 
many years, and both are in current use for the manufacturing of aerospace nickel electrodes. 
Our study has indicated that the pore size distributions of dry-powder plaques are more uniform 
than those of the slurry-coated plaques.  The results suggest that for wet-slurry sinter, better pro- 
cess optimization could be obtained by properly and carefully controlling the slurry viscosity and 
density and sinter conditions to obtain more uniform and reproducible slurry coats.  This tech- 
nique, the methods of interpretation, and results are currently available to sintered-plaque manu- 
facturers to allow and encourage them to utilize this new capability for quality control in their 
sintering processes. 
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The Aerospace Corporation functions as an "architect-engineer" for national security 
programs, specializing in advanced military space systems. The Corporation's Technology 
Operations supports the effective and timely development and operation of national security 
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atmosphere, remote sensing using atmospheric radiation; solar physics, infrared 
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of electromagnetic and particulate radiations on space systems; space instrumentation; 
propellant chemistry, chemical dynamics, environmental chemistry, trace detection; 
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific 
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